2022-04-02
- Recap
- Convolution parameters: input size, stride, kernel size, padding
- Key points: size, filter, feature map
- Pooling
- CNN components: convolution + nonlinear transform + pooling
- pooling: aggregate multiple values into one
- types of pooling: max pooling, average pooling
- pooling as downsampling
- Variants of CNN
- LeNet-5
- ImageNet challenge
- AlexNet: 巨大的进步,kernel visualization
- VGG16 (visual geometry group): 16 convolution layers
- GoogleLeNet: 同一层不同size的filters
- 模型与数据量要匹配